Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104.617
Filtrar
1.
Nat Commun ; 15(1): 3186, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622114

RESUMO

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Rho/química , Transcrição Gênica , RNA/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética
2.
Nat Commun ; 15(1): 3187, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622116

RESUMO

Transcription is crucial for the expression of genetic information and its efficient and accurate termination is required for all living organisms. Rho-dependent termination could rapidly terminate unwanted premature RNAs and play important roles in bacterial adaptation to changing environments. Although Rho has been discovered for about five decades, the regulation mechanisms of Rho-dependent termination are still not fully elucidated. Here we report that Rof is a conserved antiterminator and determine the cryogenic electron microscopy structure of Rho-Rof antitermination complex. Rof binds to the open-ring Rho hexamer and inhibits the initiation of Rho-dependent termination. Rof's N-terminal α-helix undergoes conformational changes upon binding with Rho, and is key in facilitating Rof-Rho interactions. Rof binds to Rho's primary binding site (PBS) and excludes Rho from binding with PBS ligand RNA at the initiation step. Further in vivo analyses in Salmonella Typhimurium show that Rof is required for virulence gene expression and host cell invasion, unveiling a physiological function of Rof and transcription termination in bacterial pathogenesis.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Virulência/genética , Fator Rho/genética , Fator Rho/metabolismo , Regulação Bacteriana da Expressão Gênica , Transcrição Gênica , Bactérias/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622358

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA modification within mammalian cells, holding pivotal significance in the regulation of mRNA stability, translation and splicing. Furthermore, it plays a critical role in the regulation of RNA degradation by primarily recruiting the YTHDF2 reader protein. However, the selective regulation of mRNA decay of the m6A-methylated mRNA through YTHDF2 binding is poorly understood. To improve our understanding, we developed m6A-BERT-Deg, a BERT model adapted for predicting YTHDF2-mediated degradation of m6A-methylated mRNAs. We meticulously assembled a high-quality training dataset by integrating multiple data sources for the HeLa cell line. To overcome the limitation of small training samples, we employed a pre-training-fine-tuning strategy by first performing a self-supervised pre-training of the model on 427 760 unlabeled m6A site sequences. The test results demonstrated the importance of this pre-training strategy in enabling m6A-BERT-Deg to outperform other benchmark models. We further conducted a comprehensive model interpretation and revealed a surprising finding that the presence of co-factors in proximity to m6A sites may disrupt YTHDF2-mediated mRNA degradation, subsequently enhancing mRNA stability. We also extended our analyses to the HEK293 cell line, shedding light on the context-dependent YTHDF2-mediated mRNA degradation.


Assuntos
Adenina , Proteínas de Ligação a RNA , Fatores de Transcrição , Animais , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células HeLa , Células HEK293 , Fatores de Transcrição/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
4.
J Orthop Surg Res ; 19(1): 244, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622696

RESUMO

BACKGROUND: Ossification of ligamentum flavum (OLF) is a prevalent degenerative spinal disease, typically causing severe neurological dysfunction. Kruppel-like factor 5 (KLF5) plays an essential role in the regulation of skeletal development. However, the mechanism KLF5 plays in OLF remains unclear, necessitating further investigative studies. METHODS: qRT-PCR, immunofluorescent staining and western blot were used to measure the expression of KLF5. Alkaline Phosphatase (ALP) staining, Alizarin red staining (ARS), and the expression of Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) were used to evaluate the osteogenic differentiation. Luciferase activity assay and ChIP-PCR were performed to investigate the molecular mechanisms. RESULTS: KLF5 was significantly upregulated in OLF fibroblasts in contrast to normal ligamentum flavum (LF) fibroblasts. Silencing KLF5 diminished osteogenic markers and mineralized nodules, while its overexpression had the opposite effect, confirming KLF5's role in promoting ossification. Moreover, KLF5 promotes the ossification of LF by activating the transcription of Connexin 43 (CX43), and overexpressing CX43 could reverse the suppressive impact of KLF5 knockdown on OLF fibroblasts' osteogenesis. CONCLUSION: KLF5 promotes the OLF by transcriptionally activating CX43. This finding contributes significantly to our understanding of OLF and may provide new therapeutic targets.


Assuntos
Ligamento Amarelo , Ossificação Heterotópica , Humanos , Osteogênese/genética , Conexina 43/genética , Células Cultivadas , Fatores de Transcrição/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
5.
Physiol Plant ; 176(2): e14300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629194

RESUMO

The flower bud differentiation plays a crucial role in cherry yield and quality. In a preliminary study, we revealed the promotion of spermidine (Spd) in bud differentiation and quality. However, the molecular mechanism underlying Spd regulating cherry bud differentiation remains unclear. To address this research gap, we cloned CpSPDS2, a gene that encodes Spd synthase and is highly expressed in whole flowers and pistils of the Chinese cherry (cv. 'Manaohong'). Furthermore, an overexpression vector with this gene was constructed to transform tobacco plants. The findings demonstrated that transgenic lines exhibited higher Spd content, an earlier flowering time by 6 d, and more lateral buds and flowers than wild-type lines. Additionally, yeast one-hybrid assays and two-luciferase experiments confirmed that the R2R3-MYB transcription factor (CpMYB44) directly binds to and activates the CpSPDS2 promoter transcription. It is indicated that CpMYB44 promotes Spd accumulation via regulating CpSPDS2 expression, thus accelerating the flower growth. This research provides a basis for resolving the molecular mechanism of CpSPDS2 involved in cherry bud differentiation.


Assuntos
Prunus , Espermidina , Espermidina/metabolismo , Tabaco/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus/genética , Flores/fisiologia
6.
J Am Chem Soc ; 146(14): 9779-9789, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561350

RESUMO

Protein O-linked ß-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of the homeostasis of O-GlcNAcylation has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of the O-GlcNAcylation challenging. To address this, we have developed heterobifunctional small molecules, named O-GlcNAcylation TArgeting Chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in living cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 in cellulo by recruiting FKBP12F36V-fused O-GlcNAc transferase (OGT), with temporal, magnitude, and reversible control. Overall, the OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.


Assuntos
Neoplasias , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(15): e2315659121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564635

RESUMO

Monocytes comprise two major subsets, Ly6Chi classical monocytes and Ly6Clo nonclassical monocytes. Notch2 signaling in Ly6Chi monocytes triggers transition to Ly6Clo monocytes, which require Nr4a1, Bcl6, Irf2, and Cebpb. By comparison, less is known about transcriptional requirements for Ly6Chi monocytes. We find transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) is highly expressed in Ly6Chi monocytes, but down-regulated in Ly6Clo monocytes. A few previous studies described the requirement of C/EBPα in the development of neutrophils and eosinophils. However, the role of C/EBPα for in vivo monocyte development has not been understood. We deleted the Cebpa +37 kb enhancer in mice, eliminating hematopoietic expression of C/EBPα, reproducing the expected neutrophil defect. Surprisingly, we also found a severe and selective loss of Ly6Chi monocytes, while preserving Ly6Clo monocytes. We find that BM progenitors from Cebpa +37-/- mice rapidly progress through the monocyte progenitor stage to develop directly into Ly6Clo monocytes even in the absence of Notch2 signaling. These results identify a previously unrecognized role for C/EBPα in maintaining Ly6Chi monocyte identity.


Assuntos
Regulação da Expressão Gênica , Monócitos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564636

RESUMO

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulação da Expressão Gênica , Quinases Ciclina-Dependentes/metabolismo , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fosforilação , Hipóxia , Transcrição Gênica , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
9.
BMC Genomics ; 25(1): 358, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605318

RESUMO

BACKGROUND: Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT: It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION: Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.


Assuntos
Adipócitos , Genes Homeobox , Animais , Bovinos , Adipócitos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Diferenciação Celular/genética , Proliferação de Células , Fatores de Transcrição/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Adipogenia/genética
10.
J Cell Mol Med ; 28(8): e18330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606782

RESUMO

The Hippo signalling pathway, a highly conserved signalling cassette, regulates organ size by controlling cell growth, apoptosis and stem cell self-renewal. The tumourigenic potential of this pathway is largely attributed to the activity of YAP/TAZ, which activate the TEAD1-4 transcription factors, leading to the expression of genes involved in cell proliferation and suppression of cell death. Aberrant regulation of the YAP/TAZ-TEAD signalling axis is commonly observed in malignant pleural mesothelioma (MPM), an insidious neoplasm of the pleural tissue that lines the chest cavity and covers the lungs with poor prognosis. Given the limited effectiveness of current treatments, targeting the YAP/TAZ-TEAD signalling cascade has emerged as a promising therapeutic strategy in MPM. Several inhibitors of the YAP/TAZ-TEAD signalling axis are presently undergoing clinical development, with the goal of advancing them to clinical use in the near future.


Assuntos
Mesotelioma Maligno , Neoplasias , Humanos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Hippo
11.
Cells ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607019

RESUMO

Previous research indicates that carcinogenesis involves disrupting the functions of numerous genes, including factors involved in the regulation of transcription and cell proliferation. For these reasons, in endometrial carcinogenesis, we decided to investigate the expression of TSG101 (a suppressor of tumor transformation) and LSF (a transcription factor involved in numerous cellular processes, such as cell cycle regulation, cell growth, development, and apoptosis). LSF may be involved in the regulation of TSG101 expression. The research material consisted of endometrial cancer samples from 60 patients. The control group consisted of normal endometrium samples donated by 60 women undergoing surgery for benign diseases of the female reproductive organs. The samples were subjected to immunohistochemical staining with antibodies specific to TSG101 and LSF. Specific antibodies were used to identify TSG101 and LSF in the examined histopathological preparations. An approximately 14-fold lower risk of endometrial cancer development was observed in patients with TSG expression in more than 75% of the assessed cells (4% vs. 36%; OR = 0.07; p = 0.0182). There was a four-fold lower risk of endometrial cancer development in patients with LSF expression in more than 50% of the assessed cells (32% vs. 64%; OR = 0.26; p = 0.0262). A more than three-fold lower risk of endometrial cancer development was observed in patients with LSF expression in more than 75% of the assessed cells (24% vs. 52%; OR = 0.29; p = 0.0454). Endometrial cancer was diagnosed in those with a lower level of TSG101 expression than in those with a cancer-free endometrium. Decreased expression of TSG101 may be a marker of endometrial cancer, and increased expression of LSF when diagnosed with endometrial cancer may indicate greater advancement of the disease. These markers might be used as diagnostic and prognostic markers-however, there is a lack of a correlation between them.


Assuntos
Neoplasias do Endométrio , Fatores de Transcrição , Feminino , Humanos , Fatores de Transcrição/metabolismo , Transformação Celular Neoplásica/genética , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Endométrio/metabolismo
12.
Cells ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607052

RESUMO

Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , DNA/metabolismo
13.
Cells ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38607089

RESUMO

In the filamentous ascomycete Aspergillus nidulans, at least three high hierarchy transcription factors are required for growth at extracellular alkaline pH: SltA, PacC and CrzA. Transcriptomic profiles depending on alkaline pH and SltA function showed that pacC expression might be under SltA regulation. Additional transcriptional studies of PacC and the only pH-regulated pal gene, palF, confirmed both the strong dependence on ambient pH and the function of SltA. The regulation of pacC expression is dependent on the activity of the zinc binuclear (C6) cluster transcription factor PacX. However, we found that the ablation of sltA in the pacX- mutant background specifically prevents the increase in pacC expression levels without affecting PacC protein levels, showing a novel specific function of the PacX factor. The loss of sltA function causes the anomalous proteolytic processing of PacC and a reduction in the post-translational modifications of PalF. At alkaline pH, in a null sltA background, PacC72kDa accumulates, detection of the intermediate PacC53kDa form is extremely low and the final processed form of 27 kDa shows altered electrophoretic mobility. Constitutive ubiquitination of PalF or the presence of alkalinity-mimicking mutations in pacC, such as pacCc14 and pacCc700, resembling PacC53kDa and PacC27kDa, respectively, allowed the normal processing of PacC but did not rescue the alkaline pH-sensitive phenotype caused by the null sltA allele. Overall, data show that Slt and PacC/Pal pathways are interconnected, but the transcription factor SltA is on a higher hierarchical level than PacC on regulating the tolerance to the ambient alkalinity in A. nidulans.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Cátions/metabolismo , Concentração de Íons de Hidrogênio
14.
Life Sci ; 345: 122607, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583857

RESUMO

Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Humanos , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Adiposidade , Fatores de Transcrição/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
15.
Microbiol Res ; 283: 127709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593579

RESUMO

Bifidobacterium longum subsp. infantis commonly colonizes the human gut and is capable of metabolizing L-fucose, which is abundant in the gut. Multiple studies have focused on the mechanisms of L-fucose utilization by B. longum subsp. infantis, but the regulatory pathways governing the expression of these catabolic processes are still unclear. In this study, we have conducted a structural and functional analysis of L-fucose metabolism transcription factor FucR derived from B. longum subsp. infantis Bi-26. Our results indicated that FucR is a L-fucose-sensitive repressor with more α-helices, fewer ß-sheets, and ß-turns. Transcriptional analysis revealed that FucR displays weak negative self-regulation, which is counteracted in the presence of L-fucose. Isothermal titration calorimetry indicated that FucR has a 2:1 stoichiometry with L-fucose. The key amino acid residues for FucR binding L-fucose are Asp280 and Arg331, with mutation of Asp280 to Ala resulting in a decrease in the affinity between FucR and L-fucose with the Kd value from 2.58 to 11.68 µM, and mutation of Arg331 to Ala abolishes the binding ability of FucR towards L-fucose. FucR specifically recognized and bound to a 20-bp incomplete palindrome sequence (5'-ACCCCAATTACGAAAATTTTT-3'), and the affinity of the L-fucose-loaded FucR for the DNA fragment was lower than apo-FucR. The results provided new insights into the regulating L-fucose metabolism by B. longum subsp. infantis.


Assuntos
Bifidobacterium longum , Bifidobacterium , Humanos , Bifidobacterium/genética , Bifidobacterium/metabolismo , Fucose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metabolismo dos Carboidratos , Bifidobacterium longum/genética , Bifidobacterium longum/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621873

RESUMO

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Assuntos
Ciclopentanos , Perfilação da Expressão Gênica , Mentha , Oxilipinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética
17.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558250

RESUMO

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes e Vias Metabólicas , Óleo de Palmeira/metabolismo
18.
Mol Cell ; 84(7): 1180-1182, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579674

RESUMO

Using cryo-EM and biochemical methods, Su and Vos1 discover an alternative NELF structural state that enables transcription and switches NELF-RNA polymerase II (RNAPII) compatibility with other RNAPII-associated factors that regulate pausing, elongation, termination, and transcription-coupled DNA repair.


Assuntos
RNA Polimerase II , Fatores de Transcrição , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
20.
FASEB J ; 38(7): e23584, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568836

RESUMO

Cisplatin-induced acute kidney injury (AKI) is commonly seen in the clinical practice, and ferroptosis, a type of non-apoptotic cell death, plays a pivotal role in it. Previous studies suggested that protein arginine methyltransferase 4 (PRMT4) was incorporated in various bioprocesses, but its role in renal injuries has not been investigated. Our present study showed that PRMT4 was highly expressed in renal proximal tubular cells, and it was downregulated in cisplatin-induced AKI. Besides, genetic disruption of PRMT4 exacerbated, while its overexpression attenuated, cisplatin-induced redox injuries in renal proximal epithelia. Mechanistically, our work showed that PRMT4 interacted with NCOA4 to inhibit ferritinophagy, a type of selective autophagy favoring lipid peroxidation to accelerate ferroptosis. Taken together, our study demonstrated that PRMT4 interacted with NCOA4 to attenuate ferroptosis in cisplatin-induced AKI, suggesting that PRMT4 might present as a new therapeutic target for cisplatin-related nephropathy.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Fatores de Transcrição/metabolismo , Autofagia , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...